Search results for "Salt stress"
showing 10 items of 14 documents
Plant-Based Protein Hydrolysate Improves Salinity Tolerance in Hemp: Agronomical and Physiological Aspects
2021
Hemp (Cannabis sativa L.) is a multipurpose plant attracting increasing interest as a source for the production of natural fibers, paper, bio-building material and food. In this research we studied the agronomical performance of Cannabis sativa cv. Eletta Campana irrigated with saline water. Under those conditions, we tested the effect of protein hydrolysate (PH) biostimulant application in overcoming and/or balancing deleterious salinity effects. The results of the diverse treatments were also investigated at the physiological level, focusing on photosynthesis by means of a chlorophyll a fluorescence technique, which give an insight into the plant primary photochemical reactions. Four sali…
Effects of foliar application of glycine betaine and chitosan on Puccinellia distans (Jacq.) Pari, subjected to salt stress.
2019
Introduction:Using brackish water for irrigation may expose turfgrasses to salinity stress.Employing the best treatments to maintain high-quality turfs under saline conditions is animportant requirement for turfgrass management.Methods:We tested the response of ahalophyte grass,Puccinellia distans, to irrigation with saline solutions and to foliarapplication of two osmoprotectants, such as glycine betaine (GB) or chitosan (CH). Plantswere grown in pots under controlled conditions and irrigated with 200 mM or 600 mM ofNaCl solutions. The response to salinity treatments and osmoprotectant application wasevaluated after 90 days by measuring leaffiring, leaf density, shoot length and biomass, r…
Interspecific hybridization improves the performance of Lotus spp. under saline stress
2019
Abstract Salinity is one of the most frequent limiting conditions in pasture production for grazing livestock. Legumes, such as Lotus spp. with high forage quality and capable of adapting to different environments, improves pasture performance in restrictive areas. In order to determine potential cultivars with better forage traits, the current study assess the response to salt stress of L. tenuis, L. corniculatus and a novel L. tenuis x L. corniculatus accession. For this purpose, chlorophyll fluorescence, biomass production, ion accumulation and anthocyanins and proanthocyanidins levels have been evaluated in control and salt-treated plants PSII activity was affected by salt in L. tenuis,…
Characterizing the effects of salt stress in Calendula officinalis L
2017
In this study the effects of salt stress on growth and several stress markers were investigated in the ornamental and medicinal plant Calendula officinalis. One month old plants were submitted to increasing concentrations of salt up to 150mM NaCl for a period of 30 days. Salinity affected growth in terms of stem length and fresh weight of the plants, but water content remained unchanged indicating a certain tolerance to low and mild concentrations of salt. Although Na+ and Cl− increased in parallel to applied salt treatments, the levels of K+ and Ca2+ showed no significant change, while Mg2+ levels recorded a two folds increase upon the application of the highest salt concentration. Other m…
Spermine Confers Stress Resilience by Modulating Abscisic Acid Biosynthesis and Stress Responses in Arabidopsis Plants
2019
Polyamines (PAs) constitute a group of low molecular weight aliphatic amines that have been implicated as key players in growth and development processes, as well as in the response to biotic and abiotic stresses. Transgenic plants overexpressing PA-biosynthetic genes show increased tolerance to abiotic stress. Therein, abscisic acid (ABA) is the hormone involved in plant responses to environmental stresses such as drought or high salinity. An increase in the level of free spermine (Spm) in transgenic Arabidopsis plants resulted in increased levels of endogenous ABA and promoted, in a Spm-dependent way, transcription of different ABA inducible genes. This phenotype was only partially revers…
Evolutionary diversification of type-2 HDAC structure, function and regulation in Nicotiana tabacum
2018
Ministère de l'Education Nationale et de la Recherche ; Conseil Régional de Bourgogne (PARI AGRALE8) ; Association pour la Recherche sur les Nicotianacées ; Conseil Régional de Bourgogne; International audience; Type-2 HDACs (HD2s) are plant-specific histone deacetylases that play diverse roles during development and in responses to biotic and abiotic stresses. In this study we characterized the six tobacco genes encoding HD2s that mainly differ by the presence or the absence of a typical zinc finger in their C-terminal part. Of particular interest, these HD2 genes exhibit a highly conserved intron/exon structure. We then further investigated the phylogenetic relationships among the HD2 gen…
Unraveling Salt Tolerance in Halophytes: A Comparative Study on Four Mediterranean Limonium Species with Different Geographic Distribution Patterns
2017
[EN] We have performed an extensive study on the responses to salt stress in four related Limonium halophytes with different geographic distribution patterns, during seed germination and early vegetative growth. The aims of the work were twofold: to establish the basis for the different chorology of these species, and to identify relevant mechanisms of salt tolerance dependent on the control of ion transport and osmolyte accumulation. Seeds were germinated in vitro, in the presence of increasing NaCl concentrations, and subjected to ¿recovery of germination¿ tests; germination percentages and velocity were determined to establish the relative tolerance and competitiveness of the four Limoni…
Rapid adaptation of signaling networks in the fungal pathogen Magnaporthe oryzae
2019
Abstract Background One fundamental question in biology is how the evolution of eukaryotic signaling networks has taken place. “Loss of function” (lof) mutants from components of the high osmolarity glycerol (HOG) signaling pathway in the filamentous fungus Magnaporthe oryzae are viable, but impaired in osmoregulation. Results After long-term cultivation upon high osmolarity, stable individuals with reestablished osmoregulation capacity arise independently from each of the mutants with inactivated HOG pathway. This phenomenon is extremely reproducible and occurs only in osmosensitive mutants related to the HOG pathway – not in other osmosensitive Magnaporthe mutants. The major compatible so…
Sulfate transporters in the plant’s response to drought and salinity: regulation and possible functions
2014
International audience; Drought and salinity are two frequently combined abiotic stresses that affect plant growth, development, and crop productivity. Sulfate, and molecules derived from this anion such as glutathione, play important roles in the intrinsic responses of plants to such abiotic stresses. Therefore, understanding how plants facing environmental constraints re-equilibrate the flux of sulfate between and within different tissues might uncover perspectives for improving tolerance against abiotic stresses. In this review, we took advantage of genomics and post-genomics resources available in Arabidopsis thaliana and in the model legume species Medicago truncatula to highlight and …
Use of microbial biostimulants to increase the salinity tolerance of vegetable transplants
2021
Vegetable plants are more sensitive to salt stress during the early growth stages